Bus, Cache, and Shared Memory m 215

How these two sequences are made consistent distinguishes the memory behavior in strong and weak
models. The quality of 2 memory model is indicated by hardware/software efficiency, simplicity, usefulness,
and bandwidth performance.

Memory Consistency issues The behavior ofa shared-memory system as observed by processors is called
a memory model. Specification of the memory model answers three fundamental questions: (1) What behavior
should a programmer/compiler expect from a shared-memory multiprocessor? (2) How can a definition of the
expected behavior guarantee coverage of all contingencies? (3) How must processots and the memory system
behave to ensure consistent adherence to the expected behavior of the multiprocessor?

In general, choosing a memory model involves making a compromise between a strong model minimally
restricting software and a weak model offering efficient implementation, The use of partial order in specifying
memory events gives a formal description of special memory behavior.

Primitive memory operations for multiprocessors include load (read), store (write), and one or more
synchronization operations such as swap (atomic load-store) ot conditional store. For simplicity, we consider
one representative synchronization operation swap, besides the Joad and store operations.

Event Orderings On a multiprocessor, concurrent instruction streams (or threads) executing on different
processors are processes. Each process executes a code segment. The order in which shared memory
operations are performed by one process may be used by other processes. Memory events correspond to
shared-memory accesses. Consistency models specify the order by which the events from one process should
be observed by other processes in the machine.

The event ordering can be used to declare whether a memory event is legal or illegal, when several
processes are accessing a common set of memory locations. A program order is the order by which memory
accesses occur for the execution of a single process, provided that no program reordering has taken place.
Dubois et al. (1986) have defined three primitive memory operations for the purpose of specifying memory
consistency models;

(1) A load by processor P; is considered performed with respect to processor Py at a point of time when
the issuing of a store to the same location by P, cannot affect the value returned by the load.

(2) A store by P, is considered performed with respect to P, at one time when an issued Joad to the same
address by P, returns the value by this store.

(3) Aload is globally performed if it is performed with respect to all processors and if the store that is the
source of the returned value has been performed with respect to all processors.

As illustrated in Fig. 5.19a, a processor can execute instructions out of program order using a compiler to
resequence instructions in order to boost performance. A uniprocessor system allows these out-of-sequence
executions provided that hardware interlock mechanisms exist to check data and control dependences
between instructions.

When a processor in a multiprocessor system executes a concurrent program as illustrated in F ig. 5.19b,
local dependence checking is necessary but may not be sufficient to preserve the intended outcome of a
concurrent execution,

21 6 il Advanced Computer Architecture

Maintaining the correctness and predictability of the execution results is rather complex on an MIMD
system for the following reasons:

(a) The order in which instructions belonging to different streams are executed is not fixed in a parallel
program. If no synchronization among the instruction streams exists, then a large number of different
instruction interleavings is possible.

{b) If for performance reasons the order of execution of instructions belonging to the same stream 1§
different from the program order, then an even larger number of instruction interleavings is possible.

(c) Ifaccesses are not atomic with multiple copies of the same data coexisting as in a cache-based system,
then different processors can individually observe different interleavings during the same execution.
In this case, the tota} number of possible execution instantiations of a program becomes even larger.

P
& : Example 5.8 Event ordering in a three-processor system
(Dubois, Scheurich, and Briggs, 1988)

To illustrate the possible ways of interleaving concurrent program executions among multiple processors
updating the same memory, we examine the simultaneous and asynchronous executions of three program
segments on the three processors in Fig. 5.19¢, -

The shared variables are initially set as zeros, and we assume a Print statement reads both variables
indivisibly during the same cycle to avoid confusion. If the outputs of all three processors are concatenated
in the order P, P, and P;, then the output forms a 6-tuple of binary vectors.

There are 2° = 64 possible output combinations. If all processors execute instructions in their own program
orders, then the execution interleaving a, b, c, d, e, fis possible, yielding the output 001011. Another
interleaving, a, ¢, e, b, d, /, also preserves the program orders and yields the output 111111.

If processors are allowed to execute instructions out of program order, assuming that no data dependences
exist among reordered instructions, then the interleaving b, 4. /, e, a, ¢ is possible, yielding the output 600000.

Out of 6! = 720 possible execution interleavings, 90 preserve the individual program order. From these
90 interleavings not all 6-tuple combinations can result. For example, the outcome 000000 is not possible if
processors execute instructions in program order only. As another example, the outcome 011001 is possible
if different processors can observe events in different orders, as can be the case with replicated memories.

Atomicity From the above example, multiprocessor memory behavior can be described in three categories:

(1) Program order preserved and uniform observation sequence by all processors.
(2) Out-of-program-order allowed and uniform observation sequence by all processors.
(3) Out-of-program-order allowed and nonuniform sequences observed by different processors.

This behavioral categorization leads to two classes of shared-memory systems for multiprocessors: The
first allows atomic memory accesses, and the second allows nonatomic memory accesses. A shared-memory
access is atomic if the memory updates are known to all processors at the same time. Thus a store is atomic
if the value stored becomes readable to all processors at the same time. Thus a necessary and sufficient

Bus, Cache, and Shared Memory " 217

condition for an atomic memory to be sequentially consistent is that all memory accesses must be performed
to preserve all individual program orders.

In a multiprocessor with nonatomic memory accesses, having individual program orders that conform is
not a sufficient condition for sequential consistency. In a cache/network-based multiprocessor, the system can
be nonatomic if an invalidation signal does not reach all processors at the same time. Thus a sfore is inherentiy
nonatomic in such an architecture unless special hardware mechanisms are provided to assure atomicity.
Only in atomic systems can the ordering of memory events be strongly ordered to make the program order
consistent with the memory-access order.

With a nonatomic memory system, the multiprocessor cannot be strongly ordered. Thus weak ordering is
very much desired in a multiprocessor with nonatomic memory accesses. The above discussions lead to the
division between strong and weak consistency models to be described in the next two subsections.

5.4.2 Sequential Consistency Model

The sequential consistency (SC) memory model is widely understood among multiprocessor designers.
In this model, the /oads, stores, and swaps of all processors appear to execute serially in a single global
memory order that conforms to the individual program orders of the processors, as illustrated in Fig, 5.20.
Two definitions of SC model are given below. '

Processors 0 @ @ T @

Shared switch
Memory
System Single-Port Memory

Fig. 5.20 Sequential consistency memory model (Courtesy of Sindhu, Fraltong, and Cddomruprkmdwidl
permission from Scalable Shared-Memory Multiprocessors, Kluwer Academic Publishers, 1992)

Lamport’s Definition Lamport (1979) defined sequential consistency as follows: A multiprocessor system
is sequentially consistent if the result of any execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of each individual processor appear in this
sequence in the order specified by its program.

Dubois, Scheurich, and Briggs (1986) have provided the following two sufficient conditions to achieve
sequential consistency in shared-memory access:

(2) Before a load is allowed to perform with respect to any other processor, all previous load accesses
must be globally performed and all previous store accesses must be performed with respect to all
processors.

(b) Before a store is allowed to perform with respect to any other processor, all previous load accesses
must be globally performed and all previous srore accesses must be performed with respect to all
Processors.

216" W Advanced Computer Architecture

Maintaining the correctness and predictability of the execution results is rather complex on an MIMD
system for the following reasons:

(a} The order in which instructions belonging to different streams are executed is not fixed in a parallel
program. If no synchronization among the instruction streams exists, then a large number of different
instruction interleavings is possible.

(b) If for performance reasons the order of execution of instructions belonging to the same stream is
different from the program order, then an even larger number of instruction interleavings is possible.

{c) Ifaccesses are not atomic with multiple copies of the same data coexisting as in a cache-based system,
then different processors can individually observe different interleavings during the same execution.
In this case, the total number of possible execution instantiations of a program becomes even larger.

& Example 5.8 Event ordering in a three-processor system
(Dubois, Scheurich, and Briggs, 1988)

To illustrate the possible ways of interleaying concustent program executions among multiple processors
updating the same memory, we examine the simultaneous and asynchronous executions of three program
segments on the three processors in Fig. 5.19¢.

The shared variables are initially set as zeros, and we assume a Print statement reads both variables
indivisibly during the same cycle to avoid confusion. If the outputs of all three processors are concatenated
in the order P;, P2, and Ps, then the output forms a 6-tuple of binary vectors.

There are 2° = 64 possible output combinations. If all processors execute instructions in their own prograim
orders, then the execution interleaving a, b, ¢, d, e, f1s possible, yielding the output 001011. Another
interleaving, 4, ¢, e, b, d, f; also preserves the program orders and yields the output 111111

1f processors are allowed to execute instructions out of program order, assuming that no data dependences
exist among reordered instructions, then the interleaving b, d. f, e, a, ¢ 13 possible, yielding the output 000000.

Out of 6! = 720 possible execution interleavings, 90 preserve the individual program order. From these
90 interleavings not all 6-tuple combinations can result. For example, the outcome 000000 is not possible if
Processors execute instructions in program order only. As another example, the outcome 011 001 is possible
if different processors can observe events in different orders, as can be the case with replicated memories.

Atomicity From the above example, multiprocessor memory behavior can be described in three categories:

(1) Program order preserved and uniform observation sequence by all processors.
(2) Out-of-program-order allowed and uniform observation sequence by all processors.
(3) Out-of-program-order allowed and nonuniform sequences observed by different processors.

This behavioral categorization leads to two classes of shared-memory systems for multiprocessors: The
first allows afomic memory Qccesses, and the second allows ronatomic memory dccesses. A shared-memory
access is atomic if the memory updates are known to all processors at the same time. Thus a store is atomic
if the value stored becomes readable to all processors at the same time. Thus a necessary and sufficient

degrees of weak consistency. In this section, we describe the weak consistency model introduced by Dubois
et al. (1986) and a TSO model introduced with the SPARC architecture.

Bus, Cache, and Shared Memory e T

The DSB Model Dubois, Scheurich, and Briggs (1986) have derived a weak consistency memory model
by relating memory request ordering to synchronization points in the program. We call this the DSB model
specified by the following three conditions:

(1) All previous synchronization accesses must be performed, before a load or a store access is allowed to
perform with respect to any other processor.

(2) All previous load and store accesses must be performed, before a synchronization access is allowed to
perform with respect to any other processor

(3) Synchronization accesses are sequentially consistent with respect to one ancther.

These conditions provide a weak ordering of memory-access events in a multiprocessor. The dependence
conditions on shared variables are weaker in such a system because they are only limited to hardware-
recognized synchronizing variables. Buffering is allowed in write buffers except for operations on hardware-
recognized synchronizing variables. Buffering memory accesses in multiprocessors can enhance the shared
memory performance.

With different restrictions on the memory-access ordering, many different weak memory models can
be similarly defined. The following is another weak consistency model, called the TSO (total store order),
developed by the SPARC architecture group at Sun Microsystems.

oY)

Example 5.9 The TSO weak consistency model used in
SPARC architecture (Sun Microsystems, Inc.,
1990 and Sindhu et al., 1992)

Figure 5.21 shows the weak consistency TSO model developed by Sun Microsystems’ SPARC architecture
group (1990). Sindhu et al. described that the stores and swaps issued by a processor are placed in a dedicated
store buffer for the processor, which is operated as first-in-first-out. Thus the order in which memory executes
these operations for a given processor is the same as the order in which the processor issued them (in program
order),

The memory order corresponds to the order in which the switch is thrown from one processor to another.
This was described by Sindhu et al. as follows: A load by a processor first checks its store buffer to see if it
contains a store to the same location. If it does, then the Joad returns the value of the most recent such store.
Otherwise, the load goes directly to memory. Since not all loads go to memery immediately, loads in general
do not appear in memory order. A processor is logically blocked from issuing further operations until the
foad returns a value. A swap behaves like a load and a store, It is placed in the store buffer like a store, and
it blocks the processor like a foad, In other words, the swap blocks until the store buffer is empty and then
proceeds to the memory.

Processor seae

Advanced Computer Architecture

Stores,
L oads Swaps

!

Shared
Memory
System

Stores,
Loads Swaps

l FIFO
Store Buffers

Single-Port Memory

Stores,
Loads Swaps

Fig. 5.21 The TSOWeak consistency memory model (Courtesy of Sindhu, Frailong, and Cekleoy; reprinted
" with permission from Scalable Shared-Memory Multiprocessors, Kluwer Academic Publishers, 1992)

A TSO Formal Spacification Sindhu, Frailong, and Cekleov (1992) have specified the TSO weak
consistency model with six behavioral axioms. Only an intuitive description of their axioms is abstracted

below:

' . 4 .) . .
(1) A load access is always returned with the latest store to the same memory location issued by any

processor in the system.

(2) The memory order is a total binary relation over all pairs of store operations.
(3) If two stores appear in a particular program order, then they must also appear in the same memory

order.

(4) If a memory operation follows a load in program order, then it must also follow the load in memory

order.

(5) A swap operation is atomic with respect to other stores. No other store can interleave between the load

and store parts of a swap.

(6) All stores and swaps must eventually terminate.

Note that the above axioms (5) and (6) are identical to axioms (4) and (5) for the sequential consistency
model. Axiom (1) covers the effects of both local and remote processors. Both axioms (2) and (3) are
weakened from the corresponding axioms (2) and (3) for the sequential consistency model. Axiom (4} states
that the load operations do not have to be weakened, as far as ordering is concerned. For a formal axiomatic
specification, the reader is referred to the original paper by Sindhu et al. (1992).

Comparison of Memory Models In summary, the weak consistency model may offer better performance
than the sequential consistency model at the expense of more complex hardware /software support and more
programmer awareness of the imposed restrictions. The relative merits of the strong and weak memory
models have been subjects of debate in the multiprocessor research community.

Bus, Cache, and Shared Memory . 221

The DSB and the TSO are two different weak-consistency memory models. The DSB model is weakened
by enforcing sequential consistency at synchronization points. The TSO model is weakened by treating
reads, stores, and swaps differently using FIFO store buffers. The TSO model has been implemented in some
SPARC architectures, while the DSB model has not been implemented in real systems yet.

Sindhu et al. (1992) have identified four system-level issues which also affect the choice of memory model.
First, they suggest that one should consider extending the memory model from the processor level to the
process level. To do this, one must maintain a process switch sequence. The second issue is the incorporation
of 1O locations into the memory model. I/O operations may introduce even more side effects in addition to
the normal semantics of Joads and stores.

The third issue is code modification. In the SPARC architecture, synchronization of code modification
is accomplished through the use of a flush instruction defined in the TSO model. Finally, they feel that
the memory model should address the issue of how to incorporate pipelined processors and processors
with noncoherent internal caches. The interested reader is referred to their original paper and the SPARC
Architecture Manual for details of these issues.

Strong memory ordering introduces unnecessary processor/cache waiting time and reduces the amount
of concurrency. Weak consistency has the potential to eliminate these shortcomings. Besides sequential
consistency, DSB and TSO weak memory models, other memory consistency models, such as processor
consistency and release consistency, will be treated in Chapter 9.

Ty

P | Summary

In this chapter we studied the functions and technical requirements of the system bus and cache memory,
and also discussed some basic issues related to shared main. memory in a multiprocessor system. We
saw that the single system bus has performance limitations as processors become faster and the number
of processors in the system increases. With this background, we shall study other system interconnect
strategies in latter chapters. . - '

The earliest multiprocessor systems were built around a single system bus. We studied the basic
system requirements of the bus, i.e. addressing, timing, arbitration, transaction modes, interrupts, and
so on. As cone specific example of a bus specification, we looked at Futurebus+. However, bus-based
communication of the earlier multiprocessors, usually based on a single backplane, has limited scalability.

With rapidly increasing computing power, it became clear that communication between different sub-—
systems of a computer system—and also between computer systems-—is as important as the storage and
processing of data. As demands on the system interconnect grew rapidly, performance limitations in using
a single bus such as Futurebus+ became obvious. Scalable Coherent Interconnect (SCI) and InfiniBand,
which grew out of the unsuccessful Futurebus+ effort, employ point-to-point links and packet-switching,
and can therefore support highly scalable systems.

Cache memories are provided between the processor and main memory to bridge the huge speed
mismatch between these two sub-systems. Over the last two or three decades, this speed mismatch has
grown larger, because processor speeds have risen much faster than main memory speeds. Addressing
models, direct mapped versus set associative cache, block size, and other relevant cache performance

377"

Advanced Computer Architecture

issues were discussed. Multiple levels of cache are often employed; based on their design goals, different
models of the same processor family may employ different multi-level cache designs.

Interleaving of memory modules is a technique for achieving higher aggregate memory bandwidth in
support of higher system performance. Different schemes for memory interleaving have been considered,
along with related performance issues. Memory allocation schemes such as paging and swapping were

also considered.

For multiprocessor systems with shared memory, apart from the strict sequential consistency model,
weaker consistency models are also considered—the aim being to achieve a greater degree of parallelism,
and thereby higher system performance. Basic concepts of atomicity of memory accesses and event
ordering are used to define memory consistency models; two specific such models, DSB and TSO, were

discussed.

017

Exercises

Problem 5.1 This is an illustrative example
of a design specification of a backplane bus for a
shared-memory multiprocessor with 4 processor
boards and 16 memory boards under the following
assumptions:
¢ Bus tlock rate = 200 MHz.
* Memory word length = 64 bits; processors
always request data in blocks of four words.
* Memory access time = 100 ns.
¢ Shared address space = 7 words.
« Maximum number of signal lines available on
the backplane is 96.
* Synchronous timing protocol.
* Neglect buffer and propagation delays.

Specify the following in your design of the bus
system:

{a) Maximum bus bandwidth.

(b) Effective bus bandwidth (worst case).

{c) Arbitration scheme.

(d) Name and functionality of each of the signal

lines.

(e} Number of slots required on the backpiane.

Justify any additional assumptions you need to
make.

Problem 5.2 Describpe the daisy-chaining
(Fig. 5.4) and the distributed arbiter (Fig. 5.5b) for
bus arbitration in a multiprocessor system. State
the advantages and shortcomings of each case from
both the implementational and operational points of
view.

Problem 5.3 Read the paper by Mudge et al
(1987) on multiple-bus systems and solve the
following problems:
{a) Find the maximum bandwidth for a
multiprocessor system using b buses, where
b > m and m is the number of memory
modules and the system has n processors,
(b} Prove that BW, < np, where p > 0 is the
probability that an arbitrary processor will
generate a request to access the shared
memory at the start of a memory cycle.

Problem 5.4 Estimate the effective MIPS
rate of a bus-connected multiprocessor system
under the following assumptions. The system has
16 processors, each connected to an on-board
private cache which is connected to a common bus.
Globally shared memory is also connected to the
bus. The private cache and the shared memory form
a two-level access hierarchy.

Bus, Cache, and Shared Memory

Each processor is rated 500 MIPS if 2 100% cache
hit ratio is assumed. On the average, each instruction
needs 0.2 memory access.The read access and write
access are assumed equally probable.

For a crude approximation, consider only the
penalty caused by shared-memory access and ignore
all other overheads.The cache is targeted to maintain
a hit ratio of 0.95.A cache access on a read-hit takes
2 ns; that on a write-hit takes 4 ns with a write-back
scheme, and with a write-through scheme it needs
100 ns.

When a cache block is to be replaced, the
probability that it is dirty is estimated as 0.1. An
average block transfer time between the cache and
shared memory via the bus is 100 ns.

(2) Derive the effective memory-access times
per instruction for the write-through and
write-back caches separately.

(b) Calculate the effective MIPS rate for each
processor. Determine an upper bound on
the effective MIPS rate of the 16-processor
system. Discuss why the upper bound cannot
be achieved by considering the memory
penalty alone.

Problem 5.5 Exphin the following terms
associated with cache and memory architectures.
(a) Low-order memory interleaving.
(b) Physical address cache versus virtual address
cache.
{c) Atomic versus nonatomic memory accesses.
(d) Memory bandwidth and fault tolerance.

Problem 5.6 Explain the following terms
associated with cache design:

(3) Write-through versus write-back caches.

(b) Cacheable versus noncacheable data.

{c) Private caches versus shared caches.

{d} Cache flushing policies.

(e) Factors affecting cache hit ratios..

Problem 5.7 Consider the simultanecus
execution of the three programs on the three

o 223

processors shown in Fig. 5.19¢. Answer the following
questions with reasoning or supported by computer
simulation results:

() List the 90 execution interleaving orders of
the six instructions {g, b, ¢, d, e, f Jwhich wil
preserve the individual program orders. The
corresponding output patterns (6-tuples)
should be listed accordingly.

(b) Can all 6-tuple combinations be generated
out of the 720 non-program-order
interteavings? Justify the answer with
reasoning and examples.

{c) We have assumed atomic memory access
in this example. Explain why the output
011001 is not possible in an atomic memory
multiprocessor system if individual program
orders are preserved.

(d) Suppose nonatomic memory access is allowed
in the above multiprocessor. For example,
an invalidation does not reach all private
caches at the same time. Prove that 011001 is
possible even if all instructions were executed
in program order but other processors did
not observe them in program order.

Problem 5.8 The main memory of a computer
is organized as 64 blocks, with a block size of eight
words.The cache has eight block frames. In parts (a)
through (d), show the mappings from the numbered
blocks in main memory to the block frames in the
cache. Draw all lines showing the mappings as clearly
as possible.

(a) Show the direct mapping and the address bits
that identify the tag field, the block number,
and the word number.

(b) Show the fully associative mapping and the
address bits that identify the tag field and the
word number.

(¢) Show the two-way set-associative mapping
and the address bits that identify the tag field,
the set number, and the word number.

(d) Show the sector mapping with four blocks
per sector and the address bits that identify

224" R

the sector number, the block number, and the
word number.

Problem 5.9 Consider a cache (M4) and memory
{M,) hierarchy with the following characteristics:
M;: 64K words, 5 ns access time
My: 4M words, 40 ns access time

Assume eight-word cache blocks and a set size of
256 words with set-associative mapping.
(a) Show the mapping between M; and M, -
(b) Calculate the effective memory-access time
with a cache hit ratio of h = 0.95.

Problem 5.10 Consider a main memory
consisting of four memory modules with 256 words
per module. Assume 16 words in each cache biock.
The cache has a total capacity of 256 words. Set-
associative mapping is used to allocate cache blocks
to block frames.The cache is divided into four sets.

(a) Show the address assignment for all 1024
words in a four-way low-order interleaved
organization of the main memory.

(b) How many blocks are there in the main
memory? How many block frames are there
in the cache?

(c) Explain the bit fields needed for addressing
each word in the two-level memory system.

(d) Show the mapping from the blocks in the
main memory to the sets in the cache and
explain how to use the tag field to locate a
block frame within each set.

Problem 5.11

(@) A uniprocessor system uses separate
instruction and data caches with hit ratios h;
and hy, respectively. The access time from the
processor to either cache is ¢ clock cycles,
and the block transfer time between the
caches and main memory is b clock cycles.
Among all memory references made by the
CPU, f is the percentage of references to
instructions. Among blocks replaced in the
data cache, fy, is the percentage of dirty blocks.

Advanced Computer Architecture

(Dirty means that the cache copy is different
from the memory copy.)

Assuming a write-back policy, determine the
effective memory-access time in terms of h;
ha © b, f, and fy, for this memory system.

(b) The processor memory system described
in part (a) is used to construct a bus-based
shared-memory multiprocessor. Assume that
the hit ratio and access times remain the
same as in part {a). However, the effective
memory-access time will be different because
every processor must now handle cache
invalidation in addition to reads and writes.
Let f,, be the fraction of data references
that cause invalidation signals to be sent to
other caches. The processor sending the
invalidation signal requires i clock cycles to
complete the invalidation operation. Other
processors are not involved in the invalidation
process. Assuming a write-back policy again,
determine the effective memaory-access time
for this multiprocessor.

Problem 5.12 A computer system has a 128-byte
cache. It uses four-way set-ssociative mapping with 8
bytes in each block. The physical address size is 32
bits, and the smallest addressable unit is 1 byte.

(a) Draw a diagram showing the organization
of the cache and indicating how physical
addresses are related to cache addresses.

{b} To what block frames of the cache can the
address 000010AF, 4 be assigned!

(c) If the addresses 000010AF;;and FFF F7 Axyqq
can be simultanecusly assigned to the same
cache set, what values can the address digits x
and y have!

Problem 5.13 Consider a shared-rmemory
multiprocessor system with p processors. Let m be
the average number of global memory references
per instruction execution on a typical processor.
Let t be the average access time to the shared
memory and x be the MIPS rate of a uniprocessor

Bus, Cache, and Shared Memory

using local memory. Consider the execution of n
instructions on each processor of the multiprocessor.
(a) Determine the effective MIPS rate of the
multiprocessor in terms of the parameters m,
t x, nand p.
(b) Suppose a multiprocessor has p = 32 RISC
processors, m = 0.4, and t = 0.01 Hs. What
is the MIPS rate of each processor (i.e. x
= !) needed to achieve a multiprocessor
performance of 5600 MIPS effectively?
(¢) Suppose p = 32 CISC processors with
x = 200 MIPS each are used in the above
multiprocessor system with m = 1.6 and ¢t =
0.01 pus.What will be the effective MIPS rate?

Problem 5.14 Consider a RISC-based shared-
memory multiprocessor with p processors, each
having its own instruction cache and data cache.
The peak performance rating of each processor
(assuming a 100% hit ratio in both caches) is x MIPS.
You are required to derive a performance formula,
taking into account cache misses, shared-memory
accesses, and synchronization overhead.

Assume that on the average @ percent of the
instructions executed are for synchronization
purpose, and the penalty for each synchrenization
operation is an additional t, ps. The number of
memaory accesses per instruction is m. Among
all memory references made by the CPU, f is the
percentage of references to instructions. Assume
that the instruction cache and data cache have hit
ratios h; and hy, respectively, after a long period of
program tracing on the machine. On cache misses,
instructions and data are accessed from the shared
memory with an average access time ¢, jis.

(a) Derive an expression for approximating the
effective MIPS rate of this multiprocessor in
terms of p, x, m, f, b, hy, t,,, &, and t, Note that
fs hin hg and o are all fractions and t,, and ¢
are measured in ps. Ignore the cache-access
time and other system overheads in your
derivation,

(b) Suppose m =

04, f = 05 h = 095, h,

" 25

=08, a =002 x = 500, t,, = 0.05 us, and
t; = 1 us. Determine the minimum number
of processors needed in the above
multiprocessor system in order to achieve an
effective MIPS rate of 2000.

{c) Suppose the total cost of all the caches and
shared-memory is upper-bounded by $25,000.
The cache memory costs $1.25/Kbyte, and
the shared memory costs $0.1/Kbyte. With
p = 16 processors, each having an instruction
cache of capacity S; = 32 Kbytes and a data
cache of capacity S; = 64 Kbytes, what is
the maximum shared-memory capacity C,
(in Mbytes) that can be acquired within the
budget limit?

Problem 5.15 Consider the following three
interleaved memory designs for a main memory
system with 16 memory modules. Each module is
assumed to have a capacity of 1 Mbyte.The machine
is byte-addressable.

Design 1:16-way interleaving with one memory bank.
Design 2:8-way interleaving with two memory banks.
Design 3: 4-way interleaving with four memory banks.

() Specify the address formats for each of the
above memory organizations.

(b) Determine the maximum memory bandwidth
obtained if anly one memory module fails in
each of the above memory organizations.

(¢) Comment on the relative merits of the three
interleaved memory organizations.

Problem 5.16 Consider a2 memory system for
the erstwhile Cray 1 computer. There are m = 16
interleaved modules. The access time of a module
is t; = 50 ns and the memory cycle time is 1, =
12.5 ns. We know that for this memory system the
maximum memory bandwidth of 80M words per
second is achieved for vector loads/stores except
when the stride is a multiple of 16 (bandwidth: 20M
words per second) or a muitiple of 8 (but not 16)
{(bandwidth: 40M words per second).

(a) Find the bandwidth for all strides for similar

ZZGW

systems but with the following parameters:
t. =125 ns,t, =50 ns,m = 17.

(b) Repeat part (3) for the following parameters:
t.=125ns,t, =50 ns,m = 8.

Problem 5.17 Consider the concurrent
execution of two programs by two processors
with a shared memory. Assume that A, B, C, D are
initialized to 0 and that a Print statement prints both
arguments indivisibly at the same cycle. The output
forms a 4-tuple as either ADBC or BCAD.

Po: P
a A=1 dC=1
b.B=1 e.D=1
c. Print A, D f. PrintB, C

(a) List all execution interleaving orders of six
statements which will preserve the individual
program order.

{b) Assume program orders are preserved and
all memory accesses are atomic; i.e, a store
by one processor is immediately seen by all
the remaining processors. List ali the possible
4-tuple output combinations.

(c) Assume program orders are preserved but
fmemory accesses are Nonatomic; i.e, a store
by one processor may be buffered so that
some other processors may not immediately
observe the update. List all possible 4-tuple
output combinations.

Problem 5.18 Compare the relative merits of
the four cache memory organizations:

(1) Direct-mapping cache

(2) Fully associative cache

(3) Set-associative cache

{(4) Sector mapping cache
Answer the following questions with reasoning:

{a) In terms of hardware complexity and
implementation cost, rank the four cache

Advanced Computter Architecture

organizations with justification.

(b) With respect to flexibility in implementing
biock replacement algorithms, rank the four
cache organizations and justify the ranking
order.

(c) With each cache organization, explain the
effects of block mapping policies on the hit
ratio issues.

(d) Explain the effects of block size, set
number, associativity, and cache size on
the performance of a set-associative cache
organization.

Problem 5.19 Explain the following terms
associated with memory management:
{a) The role of a memory manager in an Os
kernel.
(b) Preemptive versus nonpreemptive memory
allocation policies.
(c) Swapping memory system and examples.
{d) Demand paging memory systemand examples.
(e) Hybrid memory system and examples.

Problem 5.20 Compare the memory-access
constraints in the following memory consistency
models:

{a) Determine the similarities and subtle
differences among the conditions on
sequential consistency imposed by Lamport
(1979), by Dubois et al. (1986), and by Sindhu
et al. (1992), respectively.

(b) Repeat question (a) between the DSB model
and the TSO model for weak consistency
memory systems.

{c) A PSO (partial store order) model for weak
consistency has been refined from the TSO
model. Study the PSO specification in the
paper by Sindhu et al. (1992) and compare the
relative merits between the TSO and the PSO
memory models.

